基于微型高通量技术制备药物纳米晶体

陈嘉冬, 秦治国, 田海云, 刘涛

中国药学杂志 ›› 2021, Vol. 56 ›› Issue (18) : 1503-1507.

PDF(2414 KB)
PDF(2414 KB)
中国药学杂志 ›› 2021, Vol. 56 ›› Issue (18) : 1503-1507. DOI: 10.11669/cpj.2021.18.010
论著

基于微型高通量技术制备药物纳米晶体

  • 陈嘉冬, 秦治国, 田海云, 刘涛*
作者信息 +

Preparation of Nanocrystals Based on Miniature High-Throughput Technology

  • CHEN Jia-dong, QIN Zhi-guo, TIAN Hai-yun, LIU Tao*
Author information +
文章历史 +

摘要

目的 药物纳米晶体制备中的稳定剂筛选是十分复杂且耗时的过程。为了缩短耗时、减少耗药量,本实验探讨微型高通量技术筛选药物纳米晶体稳定剂的可行性与优点。方法 使用自行研发的微型高通量纳米制备创新技术,对美洛昔康、吲哚美辛、克霉唑、格列本脲的最适稳定剂进行筛选,以平均粒径、物理稳定性等为标准进行分析。结果 经实验发现,微型高通量纳米制备技术筛选药物纳米晶体稳定剂,与常规实验方法相比,不仅减少了耗药量,而且缩短了筛选时间。结论 此方法与扩大规模后的制备有可比的结果,具有较好的应用前景。

Abstract

OBJECTIVE To shorten preparation time of drug nanocrystals and reduce drug consumption. METHODS In this experiment, the optimal stabilizers of meloxicam,indomethacin, clotrimazole and glibenclamide were screened by miniature high-throughput technology, and the average particle size and physical stability were analyzed to explore the feasibility and advantages of miniature high-throughput technology in screening drug nanocrystals′ stabilizers.RESULTS It is found that the screening of drug nanocrystal stabilizers by miniature high-throughput technology reduces the drug consumption and shortens the screening time compared with conventional experimental methods. CONCLUSION It has comparable results with the scale-up preparation, which has good application.

关键词

纳米晶体 / 稳定剂 / 微型高通量 / 可行性

Key words

nanocrystal / stabilizer / miniature high-throughput / feasibility

引用本文

导出引用
陈嘉冬, 秦治国, 田海云, 刘涛. 基于微型高通量技术制备药物纳米晶体[J]. 中国药学杂志, 2021, 56(18): 1503-1507 https://doi.org/10.11669/cpj.2021.18.010
CHEN Jia-dong, QIN Zhi-guo, TIAN Hai-yun, LIU Tao. Preparation of Nanocrystals Based on Miniature High-Throughput Technology[J]. Chinese Pharmaceutical Journal, 2021, 56(18): 1503-1507 https://doi.org/10.11669/cpj.2021.18.010
中图分类号: R944   

参考文献

[1] ZHENG A P, SHI J. Research progress in nanocrystal drugs [J]. J Int Pharm Res(国际药学研究杂志), 2012, 39 (3):177-183.
[2] DATE A A, PATRAVALE V B. Current strategies for engineering drug nanoparticles[J]. Curr Opin Colloid Interface Sci, 2004, 9(3-4):222-235.
[3] LIU D D, XU H M, TIAN B C, et al. Fabrication of carvedilol nanosuspensions through the anti-solvent precipitation-ultrasonication method for the improvement of dissolution rate and oral bioavailability[J]. AAPS Pharm Sci Tech, 2010, 13(1):295-304.
[4] KNIEKE C, RAWTANI A, DAVE R. Concentrated fenofibrate nanoparticle suspensions from melt emulsification for enhanced drug dissolution[J]. Chem Eng Technol, 2014, 37(1):157-167.
[5] LIU T, MUELLER R, MOSCHWITZER J. Effect of drug physico-chemical properties on the efficiency of top-down process and characterization of nanosuspension [J]. Expert Opin Drug Deliv, 2015, 12(11):1-14.
[6] LIEDTKE S, WISSING S, MULLER R H, et al. Influence of high pressure homogenisation equipment on nanodispersions characteristics[J]. Int J Pharm, 2000, 196(2):183-185.
[7] KESISOGLOU F, PANMAI S, WU Y H. Nanosizing-Oral formulation development and biopharmaceutical evaluation[J]. Adv Drug Deliv Rev, 2007, 59(7):631-644.
[8] WANG L Q, RONG X Y, LIU K, et al. Preparation technologies and applications of drug nanocrystals[J]. J Hebei Univ Sci Technol(河北科技大学学报), 2014, 35(4):339-348.
[9] LIU X T, LIU T. Miniaturization technology for preparation of drug nanosuspension[J]. Mod Chem Ind(现代化工), 2016, 36(3):38-41.

基金

山东省高等学校科学技术计划项目资助(J18KA269);山东省重点研发计划资助(2019GSF107006);青岛市源头创新计划资助(19-6-2-38-cg)
PDF(2414 KB)

Accesses

Citation

Detail

段落导航
相关文章

/